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reduced. An incidental further simplification occurs in 
the procedure for deriving the equivalent parameter 
sets in that we can disregard those molecular point- 
group operations that are part of the crystallographic 
site symmetry. If, for example, a molecule of symmetry 
2/m is known to occupy a special position of site sym- 
metry T, we may, in constructing the table of equivalent 
parameter sets es, q~s, ~'s, Os, replace the true molecular 
point group by one of its subgroups 2 or m, leaving 
the inversion centre to be implied by the space-group 
symmetry in conjunction with the specification of the 
molecular coordinates. 

We can illustrate this matter by referring to the ex- 
ample, treated explicitly above, of a molecule of sym- 
metry 2/m in the space group P21/c. With the molecule 
in a general position, i.e. with four molecules per unit 
cell, we derived a list of sixteen equivalent parameter 
sets est, ~ost, ~st, Ost, ut, vt, w~ in the Cheshire-group unit 
cell of ½a × ½b x ½c. If we now substitute in that list 
the coordinate values u = v = w = O ,  appropriate to a 
structure with two molecules per unit cell in special 

positions of site symmetry T, the sixteen parameter sets 
reduce to eight distinct sets occurring twice over. And 
these are just the eight equivalent parameter sets we 
could have obtained if we had considered explicitly 
only the molecular symmetry operations 1 and 2 (or, 
alternatively, 1 and m) in tabulating the molecular equiv- 
alences. 

The author is grateful for several stimulating discus- 
sions with Dr D. Rabinovich, of the Weizmann Insti- 
tute of Science, out of which the present investigation 
evolved. 

The work was assisted by a Simon Marks Research 
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Equations are derived which express the mean distortion and the particle size coefficient of small 
distorted crystals in the Fourier coefficients of broadened X-ray diffraction powder lines. To this end 
the distribution function ~(t,L) for the distortions L of the cells, which are at a distance t apart, is 
expanded into a Fourier series and it is assumed that ~(t, L)= 0 for ILl---d/2 (d is the interplanar spacing 
between the reflecting planes). The sums of infinite series of Fourier coefficients of all orders of a re- 
flexion appear in the equations. The problem of the incomplete evaluation caused by the limited number 
of orders which can be measured in practice is discussed. Finally, as it is assumed in this analysis that 
the distortion coefficient is a constant for all values of the reciprocal coordinate of the line profile, 
the small error introduced into the equations by this approximation is calculated. 

Introduction 

The method most widely used for determining particle 
size and strains in polycrystalline materials from X-ray 
diffraction line broadening is that of Warren & Aver- 
bach (1952). For small distorted crystals in which no 
stacking faults occur, they derived the equation 

logeA~e(t) = logeV(t ) - 27r2s~ (Lt2). 

In this equation t is a distance normal to the reflecting 
planes. A~e(t) represents the real part of the Fourier 
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transform of the intensity profile of the nth order of 
reflexion, in(so), which has been corrected for continu- 
ous factors. V(t) has the following meaning: for a 
crystal of volume V, VV(t )  is the volume common to 
the crystal and its 'ghost '  shifted a distance t. Further, 
sn is the reciprocal-lattice point coordinate, and So is 
that with origin at the reciprocal lattice point. (Lt 2) 
equals ~o(t,L)LadL (and likewise (L~ )=~( t ,L )LdL) .  
Function ~o(t,L) is the normalized distribution func- 
tion for the distortion L at the distance t. Thus t + L  
is the distance between two cells in the distorted crystal, 
projected on the direction perpendicular to the reflect- 
ing planes. In the ideal crystal this distance is t. The 
mean values of L a and L depend on t and for ease of 
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notation this dependence is indicated by the subscript 
t in (L~) and (Lt). In this paper we also calculate the 
quantity ([Lt[) which is the mean distortion. The direc- 
tion into which the distortion has taken place is left 
out of consideration. For example, when ~0(t, L) is sym- 
metrical, (ILd)-- (L + ) =  (IL;-I) (+ and - denoting 
the two opposite directions). 

The equation of Warren & Averbach is exact if 
~0(t, L) is a Gaussian. If not, it gives good approximate 
values of V(t) and (Lt2), provided the product of sn 
and (L2t) 1/2 is small. 

In this paper solutions for V(t) and (L~), ([Ltl) and 
@2)1/2 are presented for the special case that ~0(t, L ) =  0 
for ILl >- d]2, where d is the interplanar spacing between 
the reflecting planes. In many practical cases (see e.g. 
Wagner & Aqua, 1964), the mean strains do not exceed 
the value of 0.005, while the particle sizes are smaller 
than 500 A. Therefore it seems to us that the condition 
tp(t,L)=0 for ILl>d/2, though a restriction for the 
general validity of the equations to be derived, will in 
many practical cases be satisfied. The essential point 
in the calculations is that ~0(t, L), as a periodic function 
of L with period d, can be expressed in a Fourier series 
and that its Fourier coefficients are equal to those of 
the line profiles of the reflexions from the set of planes 
perpendicular to the direction of t, divided by the order- 
independent factor V(t)d. The latter can be obtained 
from the condition that ~0(t, L ) =  0 for ILl = d/2. Strictly 
speaking, the equality y(t, sn)=An(t)/V(t) ,  just men- 
tioned, is not exact because it is supposed that y(t,s) 
is independent of s, so that it may be considered to be 
a constant for all values of s of the line profile. ( s=  

i+oo 2 sin 0/2 and y(t, sn) = _~o~°(t' L) exp (2rcisnL)dL while 

An(t) is the Fourier transform of in(so). The real and 
imaginary parts of An(t) are denoted by A~(t) and 
At~"(t).) This approximation, which is always used in 
line profile studies, is based on the assumption that 
the reflexion domains in reciprocal space are very small 
(see, e.g. Guinier, 1956, p. 499). Therefore in this paper 
a calculation is given of the error in y(t, sn) involved 
by the approximation. It will be shown that for sym- 
metrical strain distribution functions, the error in the 
real part of y(t, sn) is very small. 

In our equations there appear the sums of infinite 
series of the Fourier coefficients of all orders of re- 
flexion. This causes the practical determination of par- 
ticle size factors and averaged strains to be a delicate 
one. In practice, often only a small number of orders 
can be measured, so for reliable application it must be 
ascertained in some way that the desired degree of con- 
vergenee is obtained. 

Derivation of the equations 

The following refers to small distorted crystals without 
stacking faults. The fundamental equations to be used 
in our derivations are (using the continuous represen- 

tation): 

in(so)= I ~ V ( t ) y ( t , s )  exp (-2zrisot)dt (1) 

and 

i+? An(t) = _ n(So) exp (2zcisot)dso . (2) 

Now by definition of 

y(t,s)= _oo~(t,L) exp (2rcisL)dL (3) 

and using the approximation 

V(t)y(t, sn)= An(t) (4) 

we have 

I+&,) A~"(t)/V(t) = cos (2rmL/d)dL (5) 

and 

A~m(t)/V(t)= _oo~(t,L) sin (2rmL/d)dL. (6) 

Introducing the hypothesis 

tp(t,L)=0 for IL l>d /2 ,  

the integration limits of (5) and (6) can be changed 
into - d/2 and + d]2. 

Developing ~0(t,L) into a Fourier series: 

c o  

~o(t, L) = ao + 2 Z an cos (27mL/d) 
n=l 

o o  

+2 X bn sin (2~znL/d) . (7) 
n----1 

Because of the change of integration limits just men- 
tioned, an = A~e(t )/( V(t )d) (8) 
and 

bn = Aim(t)~(V(t)d). (9) 

Then, substitution of (8) and (9) into (7), together with 

p + d/2 

a0 = 1/dl_d/2~(t,L)dL= l /d ,  

gives 

~0(t,L)= 1/d+ {E/[dV(t)]} E [A,]e(t) cos (2~znL/d) 
n=l 

+ Aim(t) sin (2~znL/d)]. (10) 

It must be remarked that the last equation does not 
hold for crystals without distortions, no more is it valid 
for t = 0. In both eases the distribution function ~0(t, L) 
is a Dirac function for which the series development 
cannot be made. Equation (10) can also be derived 
from the equations of Eastabrook & Wilson (1952) 
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by putting P(m,e)=O for lel ~ 1/2m in their equations 
(8) and (9). Taking into account that ~0(t,L)=0 for 
ILl =d/2, equation (10) gives 

co  

V(t)/2= X ( -  1)n+aA~e(t) . (11) 

With the aid of (10) (ILd) can be calculated: 

d - d l 2  

i 
+ d / 2  co 

L" [Are(t) cos (2~rnL/d)lLI + {2/[dV(t)]} a-d12 n=l 

+ A~m(t) sin (2nnL/d)lLl]dL. (12) 

It can easily be shown that the order of integration 
and summation may be reversed, giving 

oo 

(ILtl)=d/4-{2d/[zrzv(t)]} S A~,+l(t)/(2n+ l) z. (13) 
n = O  

In the same way (Lt)  and (L 2) can be calculated: 

(Lt)= {d/[nV(t)]} ~ ( -  1)n+lA~(t)/n (14) 
n = l  

and 
co 

(L~)=d2/12-{d2/D2V(t)l } X ( -  1)n+lA~e(t)/n 2 . (15) 
n = l  

The error introduced into the Fourier coefficients 
y(t, Sn) by the approximation y(t, sn) = A n(t)/V(t), can 
be calculated in the following way. By substituting (3) 
in (1) and the result in (2), the following expression 
for An(t) is obtained 

An(t)= I ~  I+~ I ~  V(t')~o(t',L)exp (2~zisnL) 

exp {2raso(L + t -  t')}dLdt'dso . 

Substituting u for L + t, (16) gives 

(16) 

S+Sexp I An(t)= ( 27risnL)dL 
- -oo 

which can be written as 

An(t)= L) exp (2rcisnL)dL . (18) 

The error An(t) introduced into V(t)y(t, sn), when this 
factor is approximated by An(t), is 

An(t)= l ~ { V ( t  + L)q;(t + L,L) 

- V(t)~o(t,L)} exp (2nisnL)dL. 

For values of L ~ t: 

(19) 

O/Ot { V(t )~o(t,L) } = 
{V(t+L)~o(t+L,L)- V(t)q~(t,L))/L (20) 

and thus 

An(t)=d/dt { V(t) l~_co~o(t,L)L exp (2rasnL)dL} 

=d/dt { V(t)(Lt exp (2nisnLt))} 
=d/dt { V(t )((Lt) + 2rasn(L 2) 
- 2~z2s~(L~ } - . . .  )}. (21) 

It will be seen from (20) and (21) that the error in the 
real part of V(t)y(t, sn) is practically zero for symmet- 
rical distribution functions ~0(t, L). In the case of small 
distorted crystals the distribution functions are usually 
found to be nearly symmetrical. As V(t) and (ILd) 
are derived from the cosine coefficients, the approx- 
imation y(t, sn)= A n(t)/V(t) can in most cases be safely 
made. For small distortions (Lt) and small sn, (21) can 
be limited to the first terms, giving 

An(t)=d/dt {V(t)(L,)}+ 2aisnd/dt {V(t)(L2)} . (22) 

In the case of unsymmetrical distribution functions 
the error in the cosine coefficients depends on the de- 
rivatives of V(t) and (Lt). As (L 2) will in practice be 
larger than (Lt) the error in the sine coefficients will 
be somewhat larger and depends on the derivatives of 
V(t) and (L2). 

The error, introduced into the calculated line profile 
by assuming y(t,s) to be independent of s has been 
evaluated by Gjonnes (1959). 

Table 1. Relative errors in V(t) (%) due to series termination after the mth term for hypothetical 
distribution functions ~o(L) 

~0(L) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

91 62 37 -20 55 -40 22 70 0 29 72 39 10 64 46 15 
-72 -20 2.6 -20 - 6  -24 - 9  -30 0 -3.2 -52 -24 -16 -26 -12 - 7  

52 -1  2.6 -10 -12 --16 4.5 4 0 3-2 32 10 0.4 8 1.1 -5.4 
-30 -1  - 6  -10 4 -14 -3.2 4 0 --1.2 -26 -10 - 6  -1-2 -0.4 -5.4 

15 6 -0.6 - 6  4.6 -11 1.7 0 0 1.2 16 4 -0.8 0.2 -0.2 -5-4 
-3  -3.6 -0.6 - 6  - 2  - 9  -1.7 0 0 -0.6 -14 -5.4 - 4  0 -0.2 -5.4 

1 - 0 . 4  2"2 -5"4  -2"4  - 8  0.7 0 0 0.6 10 1.2 - 0 . 8  0 - 0 - 2  -5"4  
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D i s c u s s i o n  

When equations (11), (13), (14) and (15) are used for 
the determination of the particle size factor and the 
mean strains the infinite series have to be approximated 
with two or three terms, while in some favourable cases 
the approximation can be made with four or five terms. 
Higher orders of reflexion either cannot be measured 
at all, or can only be measured very inaccurately be- 
cause of their small intensities or the overlapping by 
neighbouring reflexions. The errors in V(t) and ([Lt]), 
involved by the approximations with a finite number 
of m terms have been calculated for a number of func- 
tions cp(t,L). The following functions, applicable for 
all values of t have been used: 

¢(L)  = (1  - IL lp /d )p /d ,  

with p =  8, 4, 3 and 2 respectively (functions numbers 
1, 2, 3 and 4), straight lines with ~o(L)=0 for ILl >_d/p; 

¢#(L)= 3 /d-48L2/d  3 , 

(number 5), parabola, with ~0(L)=0 for ILl >__ d/4; 

~(L)=3/2d-6LZ/d  3 , 

(number 6), parabola, with ¢(L)= 0 for ILl-> d/2; 

e(Z)= 12L2/d3-121Ll/d2 + 3/d, 

(number 7), parabola, with ~a(L)=0 for ILl >d/2; 

¢(L) = (1 +cos 4nL/d)2/d,  

(number 8), with ¢(L)=0 for ILl-> d/4; 

~0(L) = (1 +cos 2rcL/d)l/d, 

(number 9), with ¢(L)=0 for ILl >_d/2; 

~o(Z) =2(1-2ILl/d)(1 +cos 2rcZ/d), 

(number 10), with ~o(L)=0 for ILl >_d/2; 

o(L)=8/{d[1- 9 exp( -  8)]}{exp[- 16lLl/d]-exp(-8)}, 
~o(L)=4/{d[1- 5exp(--4)]}{exp[-8 ILI/d]-exp(-4)}, 
¢(L) = 2/{d[1 - 3 exp(-  2)]}{exp[- 4 ELl~d]- exp(-  2)}, 

(numbers 11, 12 and 13), truncated exponentials, with 

¢(L)=0 for ILl >- d/2; 

¢(L) = k exp ( -  nkZLZ), 

for which it is assumed that ¢(L) may be considered 
zero for ILl >p/k(2rc)l/2; p/k(2n) 1/z = d/2; p = 5, 4 and 3 
respectively (numbers 14, 15 and 16). For the last three 
functions (truncated Gaussians) the calculations have 
been approximated. 

The errors have been tabulated in Tables 1 and 2. 
Those of Table 2 are based on the supposition that 
V(t) is exactly known. 

Table 2. Relative errors in (ILl) (%) due to series ter- 
mination after the ruth term for hypothetical distribution 

functions ~o(L) 

e(L) 1 2 3 4 5 6 
m 
1 37 3.3 0 0.6 - 0 . 9  0.3 
2 2.5 1 0 0.1 0.2 --0.1 

The results obtained with these functions indicate 
that series termination after the second or third term 
in equation (11) can give serious errors in V(t) and 
consequently in (ILd), as V(t) occurs in the equation 
for ([Ld). The termination effect is considerably less 

oo 
for the series L" A~e.+l(t)/(2n+l) z of equation (13). 

n-~0 
The errors decrease when the standard deviation of 
the distribution function of a given type becomes larger. 
However, for the hypothetical strain models described 
by the functions 7, 8, 10 and 15 and also 2, 3, 13 and 

la) 
g(M) 

oo 

2 ~.(-1)"+'A~e(t) 
I1=1 

",(',,, 
\ \\ 

(b) 
M 

^ \ \ \ j  
1 ~ ,\~ \\ 

~ ~"~ ~'~. ,~. i i 

0 t 
(c) (M) 

Fig. 1. (a) Fourier transforms Anre(t) of the line profile of the 
nth ordcr of retie×ion. (b) Distribution function g(M) of 
column lengths M. (c) Approximations of the sum 

oo  

2 ~ (-- 1)n+lAnre(t). Curve 1 : 2 Alre(t). Curve 2: 2{Arel(t ) -  
n-I 
A2re(t)}. Curve 3: 2{Alre(t)-A2re(t)-l'A3re(t)}. Curve 4: 
2{Alre(t) - Azre(t) 4- Aare(t) - A4re(t) }. 
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16 only small errors occur when series are not con- 
tinued after the second or third term. For numbers 5 
and 14 errors remain small when the series are broken 
off after the fourth term. Thus more than half the 
number of our sixteen functions give acceptable results, 
when using three orders of reflexion. 

It is clear, that when formulae (11) and (13) are used 
for the determination of V(t) and (ILt]), it will be 
necessary to investigate if a good degree of convergence 
has been obtained. This can be done by comparing the 
result obtained with the first term with that obtained 
with the first and second, the latter with that of the 
first three terms and so on. Therefore, generally speak- 
ing, for reliable applications of these formulae it will 
be necessary for a rather large number of reflexion 
orders to be measurable. 

It is impossible to determine V(t)  with equation (11) 
for small values of t, since termination errors are very 
large in this region. Consequently, the mean value of 
the column lengths perpendicular to the reflecting 
planes, (M) ,  cannot be determined by applying the 
well-known formula 

(dV(t)/dt)t~o= - 1 / ( M )  , 

which needs values of V(t) for small t. In a special case, 
however, we expect that ( M )  can be obtained in the 
following way. For values of t smaller than the smallest 
column length, Mmin, occurring in the sample, 

V ( t ) = l - t / ( M >  , 

as is immediately evident from 

g(M)  = M (d2 V/dt 2)t=M . 

g (M)  is the distribution function for the column lengths 
M. (For these formulae see, e.g. Guinier, 1956, p. 478.) 

When the V(t) versus t curve, which can be derived 
from equation (11), partly or entirely happens to be 
a straight line, which after extrapolation to zero, inter- 
sects the t = 0  axis at V(t )= 1, ( M )  will be found by 
extrapolation of the line to the V( t )=0  axis (Fig. 1). 
In this case one can safely count on the method since 
the V(t) versus t curve itself proves the correctness of 
the approximations made by the series termination. 
The curve will be linear for a large range of values 
of t when column lengths perpendicular to the reflect- 
ing planes are rather large and have a small size range. 

The Fourier coefficients of the artificial functions 
~0(L) gradually decrease to zero with increasing s. In 
some eases (numbers 1, 2, 3 and 4) they decrease to 
zero, rise again to a smaller maximum than the fore- 
going one, decrease to zero again and so on. The coef- 
ficients of 5 and 6 decrease to zero by oscillating around 
the y = 0  axis with positive and negative values. In 
principle these oscillations have to occur also in the 
Fourier transforms of the line profiles, related with 
these artificial functions. The amplitudes of these os- 
cillations are small and in practice it will be difficult 
to detect them, the more so as they occur in the region 
of large t, where experimental errors are largest. 

The fact that only a limited number of orders of 
reflexion can be measured is less serious for the method 
of Warren & Averbach than for the method presented 
in this paper. The first is based on an extrapolation 
near Sn = 0 and therefore will practically always be ap- 
plicable while the second only can be applied if series 
termination effects are small. In both cases it is not 
possible to decide by inspection whether the assump- 
tions of the methods are fulfilled. Uncritical applica- 
tion in both cases can give values for V(t) and y(t, sn) 
with large errors. Applying for example the Warren- 
Averbach method to function 13, the extrapolation to 
s 2 = 0 of the straight line defined by the first and second 
Fourier coefficients will give a value of 0.75 for y(t, O) 
instead of 1.00 (for the functions 12, 11, 10 and 1 values 
of 0.80, 0.93, 1.06 and 1.01 are found respectively). 
The Warren-Averbach method uses mainly the Fourier 
coefficients at small values of t while ours uses those 
at larger values of t, which have larger errors caused 
by experimental inaccuracies (Stokes, 1948). 

It seems to us that the method of Warren & Aver- 
bach will have a larger applicability, but that it is 
worth while to apply our method too, as, if a sufficient 
number of orders of reflexion can be measured, in 
some cases our method may give more accurate results. 

Conclusion 

Theoretically exact equations can be given for the par- 
ticle size coefficient and the mean distortion, when the 
distribution functions for the distortion ~0(L)=0 for 
values of ILl -> half the interplanar spacing. In practical 
applications the sums of the infinite series of the 
Fourier coefficients that occur in the equations have 
to be approximated by the sums of a limited number 
of terms. The errors involved by the series termination 
may be large. In particular cases, especially in those 
in which a sufficient number of orders of reflexion can 
be measured, it is expected that the method can give 
reliable results. 

We wish to thank Drs J. van IJzeren for checking 
the mathematical part of the paper and Prof. G . D .  
Rieck for his interest in the problem and for recom- 
mending the management of the Koninklijke/Shell 
Laboratorium, Amsterdam, to give one of us the op- 
portunity to write this paper. 
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